VT-HP — High Performance Chemical Anchor

Material

Vinylester

Features & Benefits

- Suitable for use in cracked and non-cracked concrete M8 to M30 / rebar Ø8 to Ø32
- Qualified for use in seismic performance categories C1 and C2
- Styrene free, low odour for safe use in confined spaces VOC Compliant (A+ rating)
- Excellent for use in cold weather conditions or applications where fast cure is required
- Superior sustained load performance at elevated temperatures
- Can be used in dry and damp conditions, wet or flooded environments (not sea water)
- Fire rated to R180
- Fits 300ml standard caulking gun or DT300 by Simpson Strong-Tie, easy to dispense

Applications

- Structural Steel
- Steel Columns and Beams, Post Bases, Concrete Columns
- Balcony Extensions
- Post-installed rebar applications
- Threaded Rod Anchoring
- Facades, Safety Barriers
- Fences, Gates, Industrial Garage and Warehouse applications

Base Material

- Normal and Lightweight Concrete (cracked and non-cracked)
- Grout-filled and Hollow Concrete Block (when used with screen tubes)
- Certain un-reinforced masonry applications

Approvals

VT-HP

VT-HP Curing Schedule for Concrete and Masonry - Maximum working time and minimum curing time

Concrete Temperature	Gelling/Working Time	Minimum Curing Time in Dry Concrete	Minimum Curing Time in Wet Concrete
- 10°C to -6°C*	90 min	24 h	x2
-5°C to -1°C*	90 min	14 h	x2
0°C to +4°C*	45 min	7 h	x2
+5°C to +9°C	25 min	2 h	x2
+10°C to +19°C	15 min	80 min	x2
+20°C to +29°C	6 min	45 min	x2
+30°C to +34°C	4 min	25 min	x2
+35°C to +40°C	2 min	20 min	x2
+40°C	1,5 min	15 min	x2

^{*} Resin temperature must be at least 15 Degree's Celsius

Simpson Strong-Tie® (New Zealand) Ltd Call 09 477 4440 www.strongtie.co.nz

^{*} All specifications based on supplied mixer

^{*} Full cure time is 24 hours for dry conditions

^{*} In wet concrete the curing time must be doubled

VT-HP — High Performance Chemical Anchor

Specifications

Installation Data - Threaded Rod

Description.	Ob. al	11-24-			1	Threaded R	od Size (mm	1)		
Description	Symbol	Units	M8	M10	M12	M16	M20	M24	M27	M30
Nominal Insert Diameter	d		8	10	12	16	20	24	27	30
Drill Hole Diameter	d _o		10	12	14	18	24	28	28	28
Minimum Embedment Depth	h _{ef,min}		60	60	70	80	90	96	108	120
Maximum Embedment Depth	h _{ef,max}	mm	160	200	240	320	400	480	540	600
Clearance Hole Diameter in Fixture	d _f		9	12	14	18	22	26	30	33
Minimum Edge Distance	C _{min}		40	50	60	80	100	120	135	150
Minimum Spacing	S _{min}		40	50	60	80	100	120	135	150
Installation Torque	T _{inst, max}	Nm	10	20	40	80	120	160	180	200

Concrete Thickness, Critical Edge Distance and Spacing — Threaded Rod

Description	Symbol	Units	M8	M10	M12	M16	M20	M24	M27	M30
			Embedm	ent Depth h	n _{ef} = 8d					
Embedment Depth	h _{ef}		64	80	96	128	160	192	216	240
Minimum Concrete Thickness	h _{min}	100.100	100	110	126	158	190	222	246	270
Critical Edge Distance	C _{cr,N}	mm	96	120	144	192	240	288	324	360
Critical Spacing	S _{cr,N}		192	240	288	384	480	576	648	720
			Embedme	ent Depth h	_{ef} = 12d					
Embedment Depth	h _{ef}		96	120	144	192	240	288	324	360
Minimum Concrete Thickness	h _{min}		126	150	174	222	270	318	354	390
Critical Edge Distance	C _{cr,N}	mm	144	180	216	288	360	432	486	540
Critical Spacing	S _{cr,N}		288	360	432	576	720	864	972	1060

Design Resistance — Single Anchor, No Concrete Edge or Spacing Influence — Threaded Rod

Description	Symbol	Units	M8	M10	M12	M16	M20	M24	M27	M30				
			Uncracked	Concrete -	h _{ef} = 8d									
TENSION	N _{Rd}	kN	11.1	17.4	25.1	44.6	69	90.8	105.8	117.6				
SHEAR	V _{Rd}	KIN	7.2	12	16.8	31.2	48.8	70.4	92	112				
Cracked Concrete - h _{ef} = 8d														
TENSION	N _{Rd}	kN	4.5	7.3	11.5	20.4	31.9	46	68.8	84.9				
SHEAR	V _{Rd}	KIN	7.2	12	16.8	31.2	48.8	70.4	92	112				
	SHEAR V _{Rd} 7.2 12 16.8 31.2 48.8 70.4 92 112 Uncracked Concrete - h _{ef} = 12d													
TENSION	N _{Rd}	kN	12	19.3	28	52	81.3	117.3	153.3	176.3				
SHEAR	V _{Rd}	KIN	7.2	12	16.8	31.2	48.8	70.4	92	112				
			Cracked C	Concrete - h	_{ef} = 12d									
TENSION	N _{Rd}	kN	6.7	10.9	17.2	30.7	47.9	69	103.2	127.4				
SHEAR	V _{Rd}	NIN	7.2	12	16.8	31.2	48.8	70.4	92	112				

 $^{1.\} Concrete strength is 30\ MPa (cylinder) unreinforced, hole condition is "dry", and temperature range 24°C long-term/43°C short-term.$

^{2.} Tabulated loads are valid at critical spacing and critical edge distance only. For spacing and edge distance influence, use Simpson's Anchor Designer™ Software for analysis.

^{3.} $N_{\rm Rd}$ and $V_{\rm Rd}$ is based on use of a Grade 5.8 threaded insert. Verify capacity if using a different steel grade.

^{4.} All design resistances are derived from the product's ETA (European Technical Assessment).

SIMPSON Strong-Tie

VT-HP — High Performance Chemical Anchor

Design Resistance - Single Anchor, No Concrete Edge or Spacing Influence - Threaded Rod

Description	Symbol	Units	M8	M10	M12	M16	M20	M24	M27	M30			
			Catego	ory C1 - h _{ef} :	= 8d		,						
TENSION	N _{Rd}	kN	2.7	4.3	7.4	13.2	20.7	30.5	45.8	56.5			
SHEAR	V_{Rd}	KIN	2.3	4.2	5.9	10.9	17.1	24.6	32.2	39.2			
Category C2 - h _{ef} = 8d													
TENSION	N _{Rd}	kN	-	-	4	7.1	11.2	-	-	-			
SHEAR	V_{Rd}	NIN	-	-	4.1	7.3	11.4	-	-	-			
			Catego	ry C1 - h _{ef} =	: 12d								
TENSION	N _{Rd}	kN	4	6.5	11.2	19.8	31	45.8	68.7	84.8			
SHEAR	V _{Rd}	NIN	2.5	4.2	5.9	10.9	17.1	24.6	32.2	39.2			
			Catego	ry C2 - h _{ef} =	: 12d								
TENSION	N _{Rd}	kN	-	-	6	10.7	16.7	-	-	-			
SHEAR	V _{Rd}	NIN	-	-	5	10.9	17.1	-	-	-			

- 1. Concrete strength is 20 MPa (cylinder) unreinforced, hole condition is "dry", and temperature range 24°C long-term/43°C short-term.
- 2. Tabulated loads are valid at critical spacing and critical edge distance only. For spacing and edge distance influence, use Simpson's Anchor Designer™ Software for analysis.
- 3. N_{Rd} and V_{Rd} is based on use of a Grade 5.8 threaded insert. Verify capacity if using a different steel grade.
- 4. All design resistances are derived from the product's ETA (European Technical Assessment).

Steel Design Resistance (Tension) - Threaded Rod

Description	Symbol	Units	М8	M10	M12	M16	M20	M24	M27	M30
Steel Grade 5.8	NI	LANI	12.2	19.3	28	52.7	82	118	153	187
Stainless Steel A4	IN _{Rd,s}	kN	13.7	21.7	31.6	58.8	92	132	80.2	98.1

Steel Design Resistance (Shear) - Threaded Rod

Description	Symbol	Units	M8	M10	M12	M16	M20	M24	M27	M30
Steel Grade 5.8	N	kN	7.4	11.6	16.8	31.2	48.8	70.4	92	112
Stainless Steel A4	IN _{Rd,s}	KIN	8.2	13	19.2	35.3	55.1	79.5	48.3	58.9

Installation Data - Rebar

Description	Cumbal	Symbol Units	Rebar Size (mm)									
Description	Symbol		Ø8	Ø10	Ø12	Ø16	Ø20	Ø24	Ø27	Ø30	Ø32	
Nominal Insert Diameter	d		8	10	12	14	16	20	25	28	32	
Drill Hole Diameter	d _o		12	14	16	18	20	24	32	35	40	
Minimum Embedment Depth	h _{ef,min}		60	60	70	75	80	90	100	112	128	
Maximum Embedment Depth	h _{ef,max}	mm	160	200	240	280	320	400	500	580	640	
Minimum Edge Distance	C _{min}		40	50	60	70	80	100	125	140	160	
Minimum Spacing	S _{min}		40	50	60	70	80	100	125	140	160	

${\tt Concrete\ Thickness,\ Critical\ Edge\ Distance\ and\ Spacing\ -\ Rebar}$

escription Symbol Units 08 010 012 016 020 024 027 030 032													
Description	Symbol	Units	Ø8	Ø10	Ø12	Ø16	Ø20	Ø24	Ø27	Ø30	Ø32		
		En	nbedment I	Depth hef =	= 8d								
Embedment Depth	h _{ef}		64	80	96	112	128	160	200	224	256		
Minimum Concrete Thickness	h _{min}		100	110	128	148	168	208	264	294	336		
Critical Edge Distance	C _{cr,N}	mm	96	120	144	168	192	240	300	335	384		
Critical Spacing	S _{cr,N}		192	240	288	336	384	480	600	672	768		
		Em	bedment D	epth hef =	12d								
Embedment Depth	h _{ef}		96	120	144	168	192	240	300	336	384		
Minimum Concrete Thickness	h _{min}		126	150	176	204	232	288	364	406	464		
Critical Edge Distance	C _{cr,N}	mm	144	180	216	252	288	360	450	504	576		
Critical Spacing	S _{cr,N}		288	360	432	504	576	720	900	1008	1152		

Simpson Strong-Tie® (New Zealand) Ltd Call 09 477 4440 www.strongtie.co.nz

SIMPSON Strong-Tie

VT-HP — High Performance Chemical Anchor

Design Resistance - Single Anchor, No Concrete Edge or Spacing Influence - Rebar

Description	Symbol	Units	Ø8	Ø10	Ø12	Ø16	Ø20	Ø24	Ø27	Ø30	Ø32		
		Unc	racked Con	crete - he	f = 8d								
TENSION	N _{Rd}	LANI	11.1	17.4	25.1	34.1	44.6	69	96.5	113.8	126.3		
SHEAR	V _{Rd}	kN	9.3	14.7	20.7	28	36	56.7	88.7	110.7	144.7		
Cracked Concrete - hef = 8d													
TENSION	N _{Rd}	kN	4.5	7.3	11.5	15.6	20.4	31.9	49.9	74	96.6		
SHEAR	V _{Rd}	KIN	8.9	14.7	20.7	28	36	56.7	88.7	110.7	144.7		
		Uncr	acked Con	crete - hef	= 12d								
TENSION	N _{Rd}	kN	16.7	26.1	37.6	51.2	66.9	104.5	149.7	170.7	189.5		
SHEAR	V _{Rd}	KIN	9.3	14.7	20.7	28	36	56.7	88.7	110.7	144.7		
		Cra	cked Conc	rete - hef =	: 12d								
TENSION	N _{Rd}	kN	6.7	10.9	17.2	23.5	30.7	47.9	74.8	110.9	144.9		
SHEAR	V _{Rd}	KIN	9.3	14.7	20.7	28	36	56.7	88.7	110.7	144.7		

- 1. Concrete strength is 30 MPa (cylinder) unreinforced, hole condition is "dry", and temperature range 24°C long-term/43°C short-term.
- 2. Tabulated loads are valid at critical spacing and critical edge distance only. For spacing and edge distance influence, use Simpson's Anchor Designer™ Software for analysis.
- 3. All design resistances are derived from the product's ETA (European Technical Assessment).

Design Resistance - Single Anchor, No Concrete Edge or Spacing Influence - Seismic Performance C1 - Rebar

and the state of t														
Description	Symbol	Units	Ø8	Ø10	Ø12	Ø16	Ø20	Ø24	Ø27	Ø30	Ø32			
	•		h _{ef} :	= 8d										
TENSION	N _{Rd}	kN	2.7	4.3	7.4	10.1	13.2	20.7	33.1	49.2	64.3			
SHEAR	V _{Rd}	KIN	4.6	8.8	14.2	19.4	25.3	39.6	61.9	77.6	101.3			
	h _{ef} = 12d													
TENSION	N _{Rd}	kN	4	6.5	11.2	15.2	19.8	31	49.7	73.9	96.5			
SHEAR	V _{Rd}	KIN	6.3	10	14.2	19.4	25.3	39.6	61.9	77.6	101.3			

- $1.\ Concrete strength is 20\ MPa (cylinder) unreinforced, hole condition is "dry", and temperature range 24°C long-term/43°C short-term.$
- 2. Tabulated loads are valid at critical spacing and critical edge distance only. For spacing and edge distance influence, use Simpson's Anchor Designer Software for analysis.
- 3. All design resistances are derived from the product's ETA (European Technical Assessment).

Rebar Strength - Tension

Description	Symbol	Units	Ø8	Ø10	Ø12	Ø16	Ø20	Ø24	Ø27	Ø30	Ø32
Design Resistance	N _{Rd,s}	kN	19.3	30.5	43.6	59.4	77.5	121.1	189.4	237.6	310.1

Rebar Strength - Shear

•											
Description	Symbol	Units	Ø8	Ø10	Ø12	Ø16	Ø20	Ø24	Ø27	Ø30	Ø32
Design Resistance	N _{Rd.s}	kN	9	14.2	20.3	27.7	36.2	56.5	88.4	110.9	144.7

INSTALLATION

discard to the side, first 5cm of resin.

Clean hole by brushing and

Manual Air Cleaning: 4x blo

Compressed Air Cleaning:

Compressed Air Cleaning:

Trush /4x

Manual Air Cleaning:

Trush /4x

Minus diameters and depths (min. 6 bar)

Minus diameters and depths (min. 6 bar)

meter and depth. ately: Ix blow for $d_0 \le 24$ mm & $h_{ef} \le 10d$, rush /4x blow for all drill hole.

2

CARTRIDGE PREPARATION: Open cartridge, attach supplied Simpson Strong-Tie nozzle to cartridge (Do not modify or use alternative nozzle), and insert cartridge into Simpson Strong-Tie dispensing tool. Dispense and

Dispense adhesive until uniform colour appears. Inject resin using a Simpson Strong- Tie® dispensing tool. Fill hole two-thirds full, starting from bottom of hole, withdraw the nozzle after each trigger to prevent air pockets.

Insert clean, oil-free threaded rod/rebar, turning slowly until anchor/threaded rod reaches bottom of hole. The anchor can be loaded after the required curing time.

Applied torque shall not exceed the values T_{max}.

Simpson Strong-Tie® (New Zealand) Ltd Call 09 477 4440 www.strongtie.co.nz

Simpson Strong-Tie® Australia Pty Ltd Call 1300 STRONGTIE (1300 787664) www.strongtie.com.au

This flyer reflects information available as of July 5, 2022 and may be updated periodically. Simpson Strong-Tie Limited Warranty. For the Limited Warranty that applies to Simpson Strong-Tie products, please consult www. strongtie.com.au/warranty or www.strongtie.com.au/warranty or www.strongtie.com.au/warranty. To obtain a copy of the Limited Warranty, contact us at info.au@strongtie.com or info.nz@strongtie.com, or at the number provided here. The Limited Warranty contains important disclaimers, limitations and exclusions, and applies only if the products have been properly specified, installed, maintained, and used in accordance with the design limits and the structural, technical, and environmental specifications in the Simpson Strong-Tie Documentation. All future purchases of Simpson Strong-Tie products are subject to the terms of the Limited Warranty in effect as of the purchase date.